Telegram Group & Telegram Channel
Поговорим про горький урок

Внесу свои 5 копеек по поводу эссе Ричарда Саттона, одного из крупнейших исследователей в ИИ.
Вкратце, эссе о том, что исследователи потратили тонны ресурсов на использование экспертных знаний для решения задач или улучшения алгоритмов, но в итоге лучший результат показывают алгоритмы, которые полезно применяют большие вычислительные ресурсы и полагаются на оптимизацию.

У этого эссе есть и возражения, касающиеся того, что не так уж и мало "экспертных знаний" дошло до нас - например, базовые блоки нейросетей - свёртки, функции активаций, а также алгоритмы обучения - это человеческие идеи. К тому же, всё это работает на инженерной инфраструктуре, которая была спроектирована людьми - операционные системы, процессоры и т.д.

Что могу сказать?

1) Важно разделять инфраструктуру и алгоритмы. Инфраструктура обеспечивает возможность оперировать абстракциями и надёжно проводить расчёты, она может быть как спроектирована, так и придумана человеком, но результат расчётов будет тот же самый.
2) Я бы не стал переоценивать "человеческую экспертизу" в современном ИИ. Если мы говорим о строительных блоках архитектур, так это наоборот, демонстрация нашей ущербности. Мало того, что 99.9% придумывается и выкидывается на помойку, так то, что работает - это предельно простые штуки. Как показывает AutoMLZero - дай тупому брутфорсу перебрать программы из матрично-векторых простейших операций, и он тебе придумает нейросеть. А уж про простоту идеи трансформера вы и так знаете.
3) Говорят, в немалой части задач необходимым фактором успеха был какой-нибудь экспертный костыль вроде симметричных аугментаций. Но причиной этому является то, что алгоритм обучения придуман человеком. Если бы алгоритм был оптимизирован на решаемой задаче, он бы выучил все необходимые костыли самостоятельно, и сделал бы это гораздо эффективнее нас.

На сегодняшний день я полностью согласен с Саттоном, но трактовать его надо максимально широко. Самый неправильный вывод, который тут можно сделать - "нужно просто бесконечно увеличивать трансформер, и это даст любой желаемый результат". Но на самом деле расти должна совместная параметризация архитектуры и алгоритма обучения, оптимизируемая под обучаемость новым задачам. Так мы и придём к успеху.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/101
Create:
Last Update:

Поговорим про горький урок

Внесу свои 5 копеек по поводу эссе Ричарда Саттона, одного из крупнейших исследователей в ИИ.
Вкратце, эссе о том, что исследователи потратили тонны ресурсов на использование экспертных знаний для решения задач или улучшения алгоритмов, но в итоге лучший результат показывают алгоритмы, которые полезно применяют большие вычислительные ресурсы и полагаются на оптимизацию.

У этого эссе есть и возражения, касающиеся того, что не так уж и мало "экспертных знаний" дошло до нас - например, базовые блоки нейросетей - свёртки, функции активаций, а также алгоритмы обучения - это человеческие идеи. К тому же, всё это работает на инженерной инфраструктуре, которая была спроектирована людьми - операционные системы, процессоры и т.д.

Что могу сказать?

1) Важно разделять инфраструктуру и алгоритмы. Инфраструктура обеспечивает возможность оперировать абстракциями и надёжно проводить расчёты, она может быть как спроектирована, так и придумана человеком, но результат расчётов будет тот же самый.
2) Я бы не стал переоценивать "человеческую экспертизу" в современном ИИ. Если мы говорим о строительных блоках архитектур, так это наоборот, демонстрация нашей ущербности. Мало того, что 99.9% придумывается и выкидывается на помойку, так то, что работает - это предельно простые штуки. Как показывает AutoMLZero - дай тупому брутфорсу перебрать программы из матрично-векторых простейших операций, и он тебе придумает нейросеть. А уж про простоту идеи трансформера вы и так знаете.
3) Говорят, в немалой части задач необходимым фактором успеха был какой-нибудь экспертный костыль вроде симметричных аугментаций. Но причиной этому является то, что алгоритм обучения придуман человеком. Если бы алгоритм был оптимизирован на решаемой задаче, он бы выучил все необходимые костыли самостоятельно, и сделал бы это гораздо эффективнее нас.

На сегодняшний день я полностью согласен с Саттоном, но трактовать его надо максимально широко. Самый неправильный вывод, который тут можно сделать - "нужно просто бесконечно увеличивать трансформер, и это даст любой желаемый результат". Но на самом деле расти должна совместная параметризация архитектуры и алгоритма обучения, оптимизируемая под обучаемость новым задачам. Так мы и придём к успеху.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/101

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Can I mute a Telegram group?

In recent times, Telegram has gained a lot of popularity because of the controversy over WhatsApp’s new privacy policy. In January 2021, Telegram was the most downloaded app worldwide and crossed 500 million monthly active users. And with so many active users on the app, people might get messages in bulk from a group or a channel that can be a little irritating. So to get rid of the same, you can mute groups, chats, and channels on Telegram just like WhatsApp. You can mute notifications for one hour, eight hours, or two days, or you can disable notifications forever.

Knowledge Accumulator from fr


Telegram Knowledge Accumulator
FROM USA